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a b s t r a c t

This paper presents a new wavelet family by combining the Neville filter theory and

Lagrange interpolation. The filter banks of the new wavelet family are built and named

as Neville–Lagrange lifting wavelet filter banks (N–LLWFBs for short). The prediction

filters of N–LLWFBs are obtained by considering the signal sampling and Lagrange

interpolation, and the corresponding update filters are given by using Neville filter

theory. Examples are given by using this approach. The Neville–Lagrange prediction

filters are obtained; causal lifting wavelet filter banks are also constructed by using this

approach. Several N–LLWFBs for image compression are designed, and they are

normalized in terms of the normalization conditions of the first generation wavelet

filter bank. As a special example, the lifting scheme of 5/3 wavelet of JPEG2000 is

obtained; it is the two-channel N–LLWFB of order 2 both dual and primal vanishing

moments. Experiment results show that the performance of N–LLWFBs for image

compression becomes better with the increase of their vanishing moments.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decades, discrete wavelet transform and
perfect reconstruction filter banks have become the
dominant technologies in numerous areas such as signal
and image processing [1–3]. Mallat [4] developed a
pyramidal wavelet transform using a numerical filter
bank. In recent years, the second-generation wavelets
based on lifting scheme have achieved substantial
recognition [5,6], especially since their integration in the
JPEG2000 standard [7]. Lifting scheme is an efficient and
powerful tool to compute the wavelet transform. It can
improve the key properties of the first generation wavelet
step by step. At the same time it has many advantages
comparing with the first generation wavelet such as in-
place computation, integer-to-integer transforms and
speed. Daubechies and Sweldens [6] presented how to
ll rights reserved.
decompose biorthogonal wavelet filter banks into lifting
steps.

The common design of lifting wavelet filter bank is to
decompose the first generation wavelet filter into lifting
steps. That is to say, this design is heavily dependent on
the existed wavelets. Kovačević and Sweldens [8] con-
structed the wavelet families of increasing order in
arbitrary dimensions. The theoretical basis of their
method is the Neville filter theory, which is named by
Kovačević and Sweldens and is strongly related with the
interpolating filter bank. The mathematic basis of Kova-
čević and Sweldens’ method is the de Boor–Ron algorithm
[9,10]. Neville filter theory can give a perfect interpreta-
tion for the meanings of the prediction filter P and the
update filter U. The most important advantage of Neville
filter theory is that the lifting filters can be designed
directly using Neville filter theory, not in depending on
the existed wavelets.

Lagrange interpolation is a perfect common of multi-
point prediction [11,12]. It can predict the value of a center
location by using neighboring points. We find that the
weights of the locations from the Lagrange interpolation
formula can constitute the impulse response of the

www.sciencedirect.com/science/journal/sigpro
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Fig. 1. Three representations of wavelet filter bank: (a) channel

representation, (b) polyphase representation and (c) lifting representation.
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prediction filter P of the lifting wavelet filter bank.
Therefore, we can combine Neville filter theory and
Lagrange interpolation to construct the new lifting
wavelet filter banks.

This work aims to design a new lifting wavelet family
based on Neville filter theory and Lagrange interpolation.
The prediction filters Pi (1pipM�1) of lifting wavelet are
constructed using Lagrange interpolation and Neville filter
theory. The corresponding update filter Ui (1pipM�1)
can be obtained using Neville filter theory. Hence the
lifting filter banks named as Neville–Lagrange lifting
wavelet filter banks (N–LLWFBs) are built.

The remainder of the paper is organized as follows.
Section 2 gives the brief description of the background of
wavelet filter bank and the Neville filter theory. Section 3
gives the Lagrange interpolation formula on m/n-taps.
Section 4 describes the relationship between prediction
filter and down sampling, and the common equation of
prediction filters in terms of down sampling. Section 5
introduces several examples and discusses the computa-
tional complexity of Neville–Lagrange lifting filter banks.
In Section 5, the prediction filters of Neville–Lagrange
Lifting wavelet family are built with M ¼ 2, 4; the causal
M-channel N–LLWFBs are presented; moreover, the
computational complexity of N–LLWFBs is discussed.
Section 6 introduces the design of N–LLWFBs for lossless
image compression. In Section 6, an N–L-22 lifting wavelet
filter bank, which has order 2 both dual and primal
vanishing moments, is constructed, and it is just the lifting
scheme of 5/3 wavelet of JPEG2000. Furthermore, the
normalization of N–L-22 is also discussed in terms of the
normalization conditions of first generation wavelet filter
bank. Section 7 presents the experiments of N–LLWFBs for
image compression using the objective and subjective
assessment. Conclusion is given in Section 8.
2. Wavelet filter bank and Neville filter theory

2.1. Three representations of wavelet filter bank

There are three representations on wavelet filter bank
(see Fig. 1): channel representation, polyphase represen-
tation and lifting representation. The relationship of three
representations is very important for constructing and
analyzing wavelet filter bank. Here, the lifting wavelet
filter bank with only one dual lifting step and one primal
lifting step for the ith channel (1pipM�1) is considered;
the relationship equations of the three representations of
wavelet filter bank are obtained. Especially, the relation-
ship equations between the lifting representation and the
channel representation of wavelet filter bank are given.

In Fig. 1(a), the M-polyphase decompositions of ~Giðz
�1Þ

and Gi(z), 0pipM�1 are given by

~Giðz
�1Þ ¼

XM�1

j¼0

zj ~Gi;jðz
�MÞ (1)

GiðzÞ ¼
XM�1

j¼0

z�jGi;jðz
MÞ (2)
where ~G0, ~Gið1pipM � 1Þ, G0, Gi(1pipM�1) denote
analysis low-pass filter, analysis high-pass filters, synth-
esis low-pass filter, and synthesis high-pass filters,
respectively.

The polyphase representation and the lifting repre-
sentation of wavelet filter bank are shown in Figs. 1(b)
and (c), respectively. In this section, we employ two
lifting steps for the ith channel (1pipM�1), one
prediction filter (Pi) and one update filter (Ui) (see
Fig. 1(c)). The relationship equations between poly-
phase representation and lifting representation are
given by

~EðzÞ ¼

~G0;0
~G1;0

~G2;0 � � � ~GM�1;0

~G0;1
~G1;1

~G2;1 � � � ~GM�1;1

~G0;2
~G1;2

~G2;2 � � � ~GM�1;2

..

. ..
. ..

. . .
. ..

.

~G0;M�1
~G1;M�1

~G2;M�1 � � � ~GM�1;M�1

2
66666666664

3
77777777775

¼

1�
PM�1

j¼1

U�j P�j �P�1 �P�2 � � � �P�M�1

U�1 1 0 � � � 0

U�2 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

U�M�1 0 0 � � � 1

2
6666666666664

3
7777777777775

(3)
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Fig. 2. Lagrange interpolation on m/n-taps.
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EðzÞ ¼

G0;0 G1;0 G2;0 � � � GM�1;0

G0;1 G1;1 G2;1 � � � GM�1;1

G0;2 G1;2 G2;2 � � � GM�1;2

..

. ..
. ..

. . .
. ..

.

G0;M�1 G1;M�1 G2;M�1 � � � GM�1;M�1

2
6666666664

3
7777777775

¼

1 �U1 �U2 � � � �UM�1

P1 1� U1P1 �U2P1 � � � �UM�1P1

P2 �U1P2 1� U2P2 � � � �UM�1P2

..

. ..
. ..

. . .
. ..

.

PM�1 �U1PM�1 �U2PM�1 � � � 1� UM�1PM�1

2
6666666664

3
7777777775

(4)

where ~EðzÞ and E(z) are the polyphase matrices of
polyphase representation. Pi(1pipM�1) and Ui(1pip
M�1) are the prediction filters and the update filters
of the lifting representation, respectively. Here, let
Pi
�(z) ¼ Pi(z�1) and Ui

�(z) ¼ Ui(z�1), 1pipM�1.
Considering the above Eqs. (1)–(4), there are

~G0ðzÞ ¼ 1þ
XM�1

j¼1

ðz�jUn
j ðz

MÞ � Pn
j ðz

MÞUn
j ðz

MÞÞ (5)

~GiðzÞ ¼ z�i � Pn
i ðz

MÞ; 1pipM � 1 (6)

G0ðzÞ ¼ 1þ
XM�1

j¼1

z�jPjðz
MÞ (7)

GiðzÞ ¼ �Uiðz
MÞ þ z�i �

XM�1

j¼1

z�jUiðz
MÞPjðz

MÞ,

1pipM � 1 (8)

where Pi
�(z) ¼ Pi(z�1), Ui

�(z) ¼ Ui(z�1), and Pi
�(zM) ¼

Pi(z�M), Ui
�(zM) ¼ Ui(z�M).

Based on above four Eqs. (5)–(8), ~G0, ~Gið1pipM � 1Þ,
G0, Gi(1pipM�1) can be obtained in terms of Pi(1pip
M�1) and Ui(1pipM�1).

2.2. Neville filter theory and lifting scheme

Kovačević and Sweldens built the wavelet families of
increasing order in arbitrary dimensions. The main idea in
their research is the Neville filter theory. The work is
indeed a direct inspirational product of Kovačević and
Sweldens’s work in [8]. To build our latter Neville–
Lagrange lifting wavelet filter bank, we simplified the
definition and theorems of Neville filter theory from
arbitrary dimensions to one dimension, described as
Definition 1 (refer to Definition 3 in [8]), Theorem 1 (refer
to Proposition 4 in [8]), and Theorem 2 (refer to
Proposition 5 in [8]). The relation theorem between
Neville filter and lifting is denoted as Theorem 3 (refer
to Theorem 10 in [8]).

Definition 1. A filter P is a Neville filter of order N with
shift tAR if Pp(Z) ¼ p(Z+t) for pAPN.
Here Z is integer set, p is a polynomial sequence, and PN

denotes the space of all polynomial sequences of total
degree strictly less than N.

In Definition 1, applying a Neville filter P to a
polynomial sequence p(Z) results in the polynomial
sequence p(Z+p), which is the original sequence offset
by t. Therefore, A Neville filter P can be regard as a
prediction filter, which is crucial for the construction of
lifting filter banks.

Theorem 1. A filter P is a Neville filter of order N with

shift tAR if and only if its impulse response satisfiesP
kp�kkn

¼ tn, for noN.

Theorem 1 shows how to prove that a filter is a Neville
filter of order N with shift t using its impulse response.

Theorem 2. If P is a Neville filter of order N with shift tAR,

then P*(P*(z) ¼ P (z�1)) is a Neville filter of order N with

shift �t.

Theorem 3. Let Np ~N. We can build an M-channel lifting

wavelet filter bank with ~N dual vanishing moments and N

primal vanishing moments by letting the prediction filters

Pi(1pipM�1) be Neville filters of order ~N with shifts ti ¼

i=M and choosing the update filters Ui(1pipM�1) as 1/M

times of Neville filters of order N with shifts �ti.

Theorem 3 is the construction theorem of M-channel
lifting wavelet filter bank with ~N dual vanishing moments
and N primal vanishing moments using Neville filter
theory. In Theorem 3, the construction of Neville filters of
order ~N with shift ti ¼ i=M is a core problem, and the
prediction filters and update filters can be obtained using
the Neville filters.

3. Lagrange interpolation on m/n-taps

M-channel wavelet transform based on the lifting
scheme decomposes the signal into M disjoint sets using
the lazy wavelet transform. One can predict the other
M�1 sets by using the special one. Any point of the M�1
sets can be predicted using neighboring points of the
special set. These points of the special set, which are
closer to this point predicted, should have more weights,
and the weights should decrease with the increasing
distance. Lagrange interpolation is a common method of
multipoint prediction, and is consistent with above rules.

Lagrange interpolation can be used to predict a certain
point in terms of its neighboring points. In Fig. 2, we
assume that the value of each interval is equal to na; the
cross point between the horizontal axis and the left-hand
dashed line is the point x that we want to predict; the
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cross point between the horizontal axis and the right-
hand dashed line is one of the points xk that will be used
to predict. The point x divides the interval [xC, xC+1] into
two subintervals [xC, x] and [x, xC+1] with lengths of ma

and (n�m)a, respectively. The goal using Lagrange inter-
polation is to obtain the weight of any point xk when
predicting the value of the point x.

Formula of Lagrange interpolation is given as follows:

PN;CðxÞ ¼
XN�1

k¼0

QN�1
j¼0;jakðx� xjÞQN�1

j¼0;jakðxk � xjÞ

 !
yk ¼

XN�1

k¼0

Ln;m
N;C;kyk (9)

where N is the number of total points that will be used to
interpolate, C is the subscript of the point xC that is the left
endpoint of interval [xC,xC+1] including x, yk is the value of
signal at xk, and Ln;m

N;C;k is the weight at point xk when
predicting the value at point x.

In Fig. 2, we have

ðx� x0Þðx� x1Þ � � � ðx� xN�1Þ

¼ ðCnaþmaÞððC � 1ÞnaþmaÞ � � � ðnaþmaÞmað�ðn�mÞaÞ

�½�na� ðn�mÞa� � � � ½�ððN � 1Þ � ðC þ 1ÞÞna� ðn�mÞa�

¼ ðCnþmÞððC � 1ÞnþmÞ � � � ðnþmÞm

�ðn�mÞð2n�mÞ � � � ððN � 1� CÞn�mÞð�1ÞN�1�CaN

¼
YC

j¼0

ðjnþmÞ
YN�1�C

j¼1

ðjn�mÞð�1ÞN�1�CaN

(10)

Solving (x�xk), there is

x� xk ¼ ððC � kÞnþmÞa (11)

Substitute (11) into (10), and eliminate (x�xk)

YN�1

j¼0;jak

ðx� xjÞ ¼
ðx� x0Þðx� x1Þ � � � ðx� xN�1Þ

x� xk

¼

QC
j¼0ðjnþmÞ

QN�1�C
j¼1 ðjn�mÞð�1ÞN�1�CaN�1

ðC � kÞnþm

(12)

In Fig. 2, we also have

YN�1

j¼0;jak

ðxk � xjÞ ¼ ðxk � x0Þðxk � x1Þ � � � ðxk � xk�1Þðxk � xkþ1Þ � � � ðxk � xN�1Þ

¼ ðknaÞððk� 1ÞnaÞ � � �nað�naÞ � � � ð�ðN � 1� kÞnaÞ

¼ kðk� 1Þ � � �1 � 1 � 2 � � � ðN � 1� kÞð�1ÞN�1�k
ðnaÞN�1

¼
Yk

j¼1

j
YN�1�k

j¼1

jð�1ÞN�1�k
ðnaÞN�1

(13)

Substituting (12) and (13) into LN,C,k
n,m of (9) leads to

Ln;m
N;C;k ¼

Q
ðx� xjÞQ
ðxk � xjÞ

; 0pC; kpN � 1

¼
ð�1ÞC�kQC

j¼0ðjnþmÞ
QN�1�C

j¼1 ðjn�mÞ

ððC � kÞnþmÞnN�1
Qk

j¼1j
QN�1�k

j¼1 j

0pC; kpN � 1 (14)

Here, Ln;m
N;C;k is the weight of point xk when predicting the

value at point x.
Let m=n ¼ i=Mð1pipM � 1Þ, Eq. (14) can be rewritten
as

LM;i
N;C;k ¼

ð�1ÞC�kQC
j¼0ðjM þ iÞ

QN�1�C
j¼1 ðjM � iÞ

ððC � kÞM þ iÞMN�1Qk
j¼1j
QN�1�k

j¼1 j

0pC; kpN � 1; 1pipM � 1 (15)

According to the latter Eq. (20), Theorems 5 and 6, we
know that all values of LM;i

N;C;k in (15) with constant N, C, M

and i constitute the coefficients of the prediction filter
of the ith channel of Neville–Lagrange lifting wavelet
filter bank.

Theorem 4. Let 1pipM�1, 0pC,kpN�1, if

LM;i
N;C;k ¼

ð�1ÞC�kQC
j¼0ðjM þ iÞ

QN�1�C
j¼1 ðjM � iÞ

ððC � kÞM þ iÞMN�1Qk
j¼1j
QN�1�k

j¼1 j

then we have LM;i
N;C;k ¼ LM;M�i

N;N�2�C;N�1�k.

Proof. Considering LM;i
N;C;k, we replace C, i, and k with

N�2�C, M�i and N�1�k, respectively,

LM;M�i
N;N�2�C;N�1�k

¼
ð�1ÞðN�2�CÞðN�1�kÞQN�2�C

j¼0 ðjM þ ðM � iÞÞ
QN�1� N�2�Cð Þ

j¼1 ðjM � ðM � iÞÞ

ðððN � 2� CÞ � ðN � 1� kÞÞM þ ðM � iÞÞMN�1QN�1�k
j¼1 j

QN�1�ðN�1�kÞ
j¼1 j

¼
ð�1Þ�1�CþkQN�2�C

j¼0 ððjþ 1ÞM � iÞ
Q1þC

j¼1 ððj� 1ÞM þ iÞ

ðð�1� C þ kÞM þM � iÞMN�1QN�1�k
j¼1 j

Qk
j¼1j

¼
ð�1ÞC�kQN�1�C

j¼1 ðjM � iÞ
QC

j¼0ðjM þ iÞ

ððC � kÞM þ iÞMN�1Qk
j¼1j
QN�1�k

j¼1 j

(16)

Comparing (15) and (16), there is LM;i
N;C;k ¼ LM;M�i

N;N�2�C;N�1�k,
and the proof is completed. &

Corollary 1. Let 1pipM�1, 0pC, kpN�1, if

LM;i
N;C;k ¼

ð�1ÞC�kQC
j¼0ðjM þ iÞ

QN�1�C
j¼1 ðjM � iÞ

ððC � kÞM þ iÞMN�1Qk
j¼1j
QN�1�k

j¼1 j
,

then we have L2;1
N;ðN=2Þ�1;k ¼ L2;1

N;ðN=2Þ�1;N�1�k if N is an even

number.

Remark 1. Corollary 1 shows that the prediction filter of
two-channel Neville–Lagrange lifting wavelet filter bank
is obtained when letting M ¼ 2. Furthermore, let N is an
even number and C ¼ ðN=2Þ � 1, we can get the prediction
filters of two-channel Neville–Lagrange filter bank with
linear phase. Another point that we should note is that
Pb

j¼af ðjÞ ¼ 1 if a4b.

4. Prediction filter and down sampling

The Neville filter named by Kovačević and Sweldens is
closely connected to the interpolating filter. The Neville
filter theory is a common theoretical framework for the
design of lifting wavelet filter banks with only one dual
lifting step and one primal lifting step between low-pass
and each high-pass channel. That is, any lifting wavelet
filter bank with only one P and one U between low-pass
and each high-pass channel must fit to the framework of
Neville filter theory. Moreover, the Neville filter theory can
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Fig. 5. Prediction filter of M-channel lifting wavelet filter bank.
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give the perfect interpretation on the meanings of
prediction filter P and update filter U.

In this section, the down sampling by M of original
signal is considered. The prediction filter between low-
pass and the ith high-pass channel is obtained by
comparing the relationship of their sampling process.

According to Fig. 1(c), the down sampling of the low-
pass channel is shown in Fig. 3.

In Fig. 3, the top figure denotes the original signal, and
the sampling points of the low-pass channel are marked.
The bottom figure in Fig. 3 denotes the down sampling by
M of the original signal. The dashed line cross their center
marks the center interval.

In Fig. 1(c), the sampling process of the ith high-pass
channel is constituted by translation and down sampling.
Hence it can be shown in Fig. 4.

In Fig. 4, the top figure shows the original signal, and
the sampling points of the ith high-pass channel are
marked. The middle figure is the left shift of the original
signal. The bottom figure denotes the down sampling by
M of the signal of the middle figure.

In Fig. 3, the point that needs to be predicted is z�CM�i;
this point is translated into z�C according to the process of
translation and decimation in Fig. 4. That is, to predict the
point z�CM�i by the sequence of points (y,z0,z�M,y,
z�CM,z�CM�M,y) in the top figure of Fig. 3, one can predict
the point z�C in the bottom figure of Fig. 4 by the sequence
of points (y,z0,z�1,y,z�C,z�C�1,y) in the bottom figure
of Fig. 3.

Therefore, to predict the point z�C of the ith high-pass
channel (see the bottom figure in Fig. 4), the prediction
filter that applied to the signal of low-pass channel
(see the bottom figure in Fig. 3) must have the same
symmetrical center, and the product among the corres-
Fig. 3. Sampling of the low-pass channel in Fig. 1(c).

Fig. 4. Transaction and sampling of the ith high-pass channel in Fig. 1(c).
ponding points is z�C. Therefore, the prediction filter can
be shown in Fig. 5 as follows.

According to Fig. 5, the prediction filter P(z) can be
given by

PðzÞ ¼ � � � þ pCz�C þ pC�1z1�C þ � � � þ p1z�1 þ p0z0 þ p�1z1

þ � � � þ pC�ðN�1Þz
N�1�C þ � � � (17)

Let the length of P(z) is N, hence it can be rewritten as

PN;CðzÞ ¼ pCz�C þ pC�1z1�C þ � � � þ p1z�1 þ p0z0 þ p�1z1

þ � � � þ pC�ðN�1Þz
N�1�C (18)

That is,

PN;CðzÞ ¼
XN�1

k¼0

pC�kzk�C (19)

In (19), let pC�k ¼ LM;i
N;C;k, and PN,C(z) can be rewritten as

PM;i
N;CðzÞ ¼

XN�1

k¼0

pC�kzk�C ¼
XN�1

k¼0

LM;i
N;C;kzk�C (20)

where NAZ+, 0pCpN�1, MX2 and 1pipM�1.
In (15), let i ¼ 1,2, y, M�1, the filters PM;i

N;CðzÞ constitute
the prediction filters of M-channel lifting wavelet filter
bank. The design of the prediction filters is based on the
coefficients formula LM;i

N;C;k of Lagrange interpolation, and it
can be proven that the lifting wavelet filters designed in
this way satisfy Theorem 1 (see Theorems 5 and 6). Hence
we call the prediction filters as M-channel Neville–
Lagrange lifting wavelet filters.

Considering (15) and (20), we have the following
theorem:

Theorem 5. Let 1pNp10, 2pMp10, we have
PN�1

k¼0

LM;i
N;C;kðk� CÞL ¼ ði=MÞL where 0pLpN�1 and 1pipM�1.

Proof. The proof of Theorem 5 is very difficult if only using
the symbol representation, however, it can be completed
using computer program. Let N increase from 1 to 10; let M

increase from 2 to 10; adjusting the values of C, i and L,
Theorem 5 can be proven in terms of computer program
and it can be described by the following pseudocode:
for 1pNp10
for 2pMp10

for 0pCpN�1
for 1pipM�1

for 0pLpN�1
for 0pkpN�1

compute
P

kLM;i
N;C;kðk� CÞK

compare
P

kLM;i
N;C;kðk� CÞK with (i/M)L &
Remark 2. There are two computational rules in Theorem
5. One rule is 00

¼ 1 that can be occurred when k ¼ C and
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Table 1
Neville– Lagrange prediction filters for orders 1– 5

(N,C) zk

z�4 z�3 z�2 z�1 z0 z1 z2 z3 z4

(1,0) 1 /1

(2,0) 1 1 /2

(2,1) �1 3 /2

(3,0) 3 6 �1 /23

(3,1) �1 6 3 /23

(3,2) 3 �10 15 /23

(4,0) 5 15 �5 1 /24

(4,1) �1 9 9 �1 /24

(4,2) 1 �5 15 5 /24

(4,3) �5 21 �35 35 /24

(5,0) 35 140 �70 28 �5 /27

(5,1) �5 60 90 �20 3 /27

(5,2) 3 �20 90 60 �5 /27

(5,3) �5 28 �70 140 35 /27

(5,4) 35 �180 378 �420 315 /27

These filters are the Neville filters with shift 1/2.
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L ¼ 0; the other rule is that Pb
j¼af ðjÞ ¼ 1 if a4b, which

appears in equation LM;i
N;C;k.

Theorem 6. Let 1pNp10, 2pMp10, if LM;i
N;C;k is presented

as (15), then the prediction filters PM;i
N;CðzÞ (see (20)) are

Neville filters of order N with shifts t ¼ i=M.

Proof. Combining Theorems 1 and 5, the proof can be
completed. &

Remark 3. To simplify the proof, we limit the parameters
N and M to intervals [1,10] and [2,10], respectively.
Theorems 5 and 6 should be correct if the limited
conditions on N and M are canceled, but the proof is need
to be researched deeply.

Theorem 7. Let Np ~N, 1pN; ~Np10, 2pMp10, if LM;i
N;C;k is

presented as (15), then we can build an M-channel lifting

wavelet filter bank with ~N dual vanishing moments and N

primal vanishing moments by letting the prediction filters be

PM;i
N;CðzÞ;1pipM � 1 (see (20)) and choosing the update

filters Ui,1pipM�1 as ð1=MÞPM;i
~N;C
ðz�1Þ;1pipM � 1.

Proof. Combining Theorems 6, 3 and 2, the proof can be
completed. &

5. Examples of Neville–Lagrange lifting wavelet
filter banks

5.1. Prediction filters of Neville– Lagrange lifting

wavelet family

Based on above discussions, we can build the predic-
tion filters of N–LLWFBs. In (15), for every fixed N, M and i,
let C change from 0 to N�1, one can obtain N prediction
filters, which can be presented in Eq. (20). It can be proved
that these prediction filters corresponding to fixed N, M

and i are Neville filters of order N with shifts t ¼ i=M using
Theorems 5 and 6.

In (15), let M ¼ 2, There is

L2;1
N;C;k ¼

ð�1ÞC�kQC
j¼0ð2jþ 1Þ

QN�1�C
j¼1 ð2j� 1Þ

ð2ðC � kÞ þ 1Þ2N�1Qk
j¼1j
QN�1�k

j¼1 j

0pC; kpN � 1 (21)

Let M ¼ 2, Eq. (20) can be rewritten as

P2;1
N;CðzÞ ¼

XN�1

k¼0

L2;1
N;C;kzk�C (22)

Hence we can construct the prediction filters with shift
t ¼ i=M ¼ 1=2, shown in Table 1.

Remark 4. Table 1 shows the prediction filters of
Neville–Lagrange filter banks when N is from 1 to 5. In
Table 1, the causal Neville filters can be obtained when
C ¼ N�1, and the anticausal Neville filters are given when
C ¼ 0. Let N be even and C ¼ ðN=2Þ � 1, according to
Corollary 1 and Remark 1, we can construct the most
interesting prediction filters of two-channel Neville filters
with linear phase.
In (15), let M ¼ 4, we have

L4;i
N;C;k ¼

ð�1ÞC�kQC
j¼0ð4jþ iÞ

QN�1�C
j¼1 ð4j� iÞ

ð4ðC � kÞ þ iÞ4N�1Qk
j¼1j
QN�1�k

j¼1 j

0pC; kpN � 1; 1pip3 (23)

Similarly, Eq. (20) can be rewritten as

P4;i
N;CðzÞ ¼

XN�1

k¼0

L4;i
N;C;kzk�C ; 1pip3 (24)

Therefore, the prediction filters with shift t ¼ i=4;
1pip3 can be constructed, as shown in Table 2.

Table 2 shows the prediction filters of Neville–
Lagrange filter banks when letting N be 2–4. Comparing
Table 1 with Table 2, we find that Table 1 can be obtained
by letting i ¼ 2 in Table 2. Table 1 describes the same
Neville–Lagrange prediction filters with shift 1/2 as letting
i=M ¼ 2=4 ¼ 1=2 in Table 2.

5.2. Causal Neville– Lagrange lifting wavelet filter banks

In terms of the Lagrange interpolation equation (15)
and the equation of prediction filter (20), it is possible
to build causal N–LLWFBs by letting the prediction
filter be a causal Neville filter and choosing the update
filter in terms of the corresponding anticausal Neville
filter.

In (15) and (20), let N ¼ ~N;C ¼ ~N � 1, we can obtain
causal prediction filters

PM;i
~N; ~N�1
ðzÞ ¼

X~N�1

k¼0

LM;i
~N; ~N�1;k

zk�ð ~N�1Þ (25)

LM;i
~N; ~N�1;k

¼
ð�1Þ

~N�1�kQ ~N�1
j¼0 ðjM þ iÞ

ðð ~N � 1� kÞM þ iÞM
~N�1Qk

j¼1j
Q ~N�1�k

j¼1 j

1pipM � 1; 0pkp ~N � 1 (26)
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Table 2
Neville– Lagrange prediction filters for orders 2– 4

(N,C,i) zk

z�3 z�2 z�1 z0 z1 z2 z3

(2,0,1) 3 1 /22

(2,0,2) 1 1 /21

(2,0,3) 1 3 /22

(2,1,1) �1 5 /22

(2,1,2) �1 3 /21

(2,1,3) �3 7 /22

(3,0,1) 21 14 �3 /25

(3,0,2) 3 6 �1 /23

(3,0,3) 5 30 �3 /25

(3,1,1) �3 30 5 /25

(3,1,2) �1 6 3 /23

(3,1,3) �3 14 21 /25

(3,2,1) 5 �18 45 /25

(3,2,2) 3 �10 15 /23

(3,2,3) 21 �66 77 /25

(4,0,1) 77 77 �33 7 /27

(4,0,2) 5 15 �5 1 /24

(4,0,3) 15 135 �27 5 /27

(4,1,1) �7 105 35 �5 /27

(4,1,2) �1 9 9 �1 /24

(4,1,3) �5 35 105 �7 /27

(4,2,1) 5 �27 135 15 /27

(4,2,2) 1 �5 15 5 /24

(4,2,3) 7 �33 77 77 /27

(4,3,1) �15 65 �117 195 /27

(4,3,2) �5 21 �35 35 /24

(4,3,3) �77 315 �495 385 /27

These filters are the Neville filters with shift i/4.
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In (15) and (20), let C ¼ 0, the anticausal prediction
filters are given as follows:

PM;i
N;0ðzÞ ¼

XN�1

k¼0

LM;i
N;0;kzk (27)

LM;i
N;0;k ¼

ð�1Þk
QN�1

j¼1 ðjM � iÞ

ði� kMÞMN�1Qk
j¼1j
QN�1�k

j¼1 j

1pipM � 1; 0pkpN � 1 (28)

Considering Theorem 7 and (28), the causal update filter
corresponding to PM;i

N;0ðzÞ (see (27)) can be written as

UM;i
N;0ðzÞ ¼

1

M
PM;i

N;0ðz
�1Þ ¼

1

M

XN�1

k¼0

LM;i
N;0;kz�k (29)

Therefore, let Np ~N, using Theorem 7, the causal
N–LLWFBs with ~N dual vanishing moments and N primal
vanishing moments can be constructed. The prediction
filter is given by composing (25) and (26), and the update
filter can be obtained according to (28) and (29).

5.3. Computational complexity

In this section, we discuss the computational complexi-
ty of N–LLWFBs. The unit we use is the cost, measured
in number of multiplications and additions, computed
by using one sample pair (sl,dl,1,y,dl,M�1), where
(sl,dl,1,y,dl,M�1) denotes the result of applying the down
sampling to the original signal x ¼ {xl|lAZ}, sl denotes the
sampling of low-pass channel and dl,i(1pipM�1) stands
for the sampling of ith high-pass channel. The lengths of
filters (prediction filter and update filter) of the Neville–
Lagrange filter banks are equal to the orders of their
vanishing moments, and the cost of applying a lifting
wavelet filter bank pair (Pi,Ui), 1pipM�1 with ~N dual
vanishing moments and N primal vanishing moments can
be calculated. The cost of applying a prediction filter Pi,
1pipM�1 with ~N dual vanishing moments is ~N multi-
plications and ~N � 1 additions; the cost of applying an
update filter Ui, 1pipM�1 with N primal vanishing
moments is N multiplications and N�1 additions. There-
fore, considering the channel number M, the total cost of
analysis part is 2ðM � 1Þð ~N þ N � 1Þ.

For the two-channel Neville–Lagrange filter banks,
the cost of analysis part is 2ð ~N þ N � 1Þ. For the case of
the filter P and U are symmetric, and ~N and N are even, the
cost of applying the prediction P is ~N=2 multiplications
and ~N � 1 additions; the cost of applying the update U is
N/2 multiplications and N�1 additions. Therefore, the
total cost is 3

2ð
~N þ NÞ � 2.

6. Neville–Lagrange lifting wavelet filter banks for
lossless image compression

In this section, two-channel N–LLWFBs with linear
phase are built. Firstly, a two-channel Neville–Lagrange
lifting wavelet filter bank of order 2 both dual and primal
vanishing moments is constructed and normalized; it is
just the lifting scheme of 5/3 wavelet of JPEG2000
standard. Furthermore, the prediction filters of Neville–
Lagrange lifting wavelet family for image compression are
described; they all have the property of linear phase.
Finally, the experiments of N–LLWFBs for image compres-
sion are discussed.

6.1. Construction of N– L-22 lifting wavelet filter bank

In this section, a Neville–Lagrange lifting wavelet filter
bank is constructed; it is two-channel lifting wavelet filter
bank of order 2 for both dual and primal vanishing
moments. Moreover, it is named as the Neville–Lagrange-
22 (N–L-22 for short) lifting wavelet filter bank. Here, the
number ‘‘2’’ denotes the order of vanishing moments.

In (15), let N ¼ 2, C ¼ ðN=2Þ � 1 ¼ 0, M ¼ 2, the
Lagrange interpolation coefficients can be given by

L2;1
2;0;k ¼

ð�1Þk

ð1� 2kÞ2
Qk

j¼1j
Q1�k

j¼1 j
; 0pkpN � 1 (30)

Hence

Let k ¼ 0; then L2;1
2;0;0 ¼

1
2

Let k ¼ 1; then L2;1
2;0;1 ¼

1
2

According to (20) the prediction filter of lifting wavelet
filter bank can be written as

PðzÞ ¼ 1
2þ

1
2z (31)

Considering Theorem 6, we have: P(z) is a Neville filter
of order 2 with shift 1/2.
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The corresponding update filter U(z) with vanishing
moments of order 2 is given according to Theorem 7

UðzÞ ¼ Pðz�1Þ=2 ¼ 1
4z�1 þ 1

4 (32)

According to the next section, we will show that the
prediction filter of the lifting scheme of 5/3 wavelet of
JPEG2000 (JPEG2000-5/3 for short) is same to (31), and
the update filter is just Eq. (32). Therefore, the lifting
scheme of JPEG2000-5/3 has order 2 both dual and primal
vanishing moments; and it can also be named as
Neville–Lagrange-22 lifting wavelet filter bank.

6.2. Normalization of N– L-22 lifting wavelet filter bank

The coefficients of a wavelet filter bank must satisfy
the normalization conditions of the first generation
wavelet filter bank theory. Similarly, the lifting wavelet
filter bank is also needed to satisfy normalization
conditions. The difference between the first generation
wavelet and the lifting the wavelet is the normalization
mode. The normalization of the first generation wavelet is
implemented by scaling the coefficients of the wavelet
filter bank, but the normalization of the lifting wavelet is
achieved by scaling the coefficients of a decomposed
signal using lifting. In this section, the normalization
method of the N–L-22 lifting wavelet filter bank is given.

Let M ¼ 2, Eqs. (5)–(8) can be simplified as

~G0ðzÞ ¼ 1þ ðz�1 � P�ðz2ÞÞU�ðz2Þ (33)

~G1ðzÞ ¼ z�1 � P�ðz2Þ (34)

G0ðzÞ ¼ 1þ z�1Pðz2Þ (35)

G1ðzÞ ¼ z�1 � ð1þ z�1Pðz2ÞÞUðz2Þ (36)

where ~G0; ~G1;G0; and G1 denote analysis low-pass filter,
analysis high-pass filter, synthesis low-pass filter, and
synthesis high-pass filter, respectively.

Considering multiresolution theory, it is known that
the coefficients of the first generation wavelet filter bank,
which satisfies biorthogonal conditions, must satisfy these
conditions as follows:X

k

~g0;k ¼
ffiffiffi
2
p

;
X

k

~g1;k ¼ 0;
X

k

g0;k ¼
ffiffiffi
2
p

;
X

k

g1;k ¼ 0

(37)

For the N–L-22 lifting wavelet filter, ~G0; ~G1;G0;G1 can be
obtained by combining (33)–(36), (31) and (32)

~G0ðzÞ ¼ 1þ ðz�1 � ð12þ
1
2z�2ÞÞð14z2 þ 1

4Þ

¼ � 1
8z�2 þ 1

4z�1 þ 3
4þ

1
4z� 1

8z2 (38)

~G1ðzÞ ¼ z�1 � ð12þ
1
2z�2Þ ¼ �1

2z�2 þ z�1 � 1
2 (39)
Fig. 6. Normalization of N–
G0ðzÞ ¼ 1þ z�1ð12þ
1
2z2Þ ¼ 1

2z�1 þ 1þ 1
2z (40)

G1ðzÞ ¼ z�1 � ð1þ z�1ð12þ
1
2z2ÞÞð14z�2 þ 1

4Þ

¼ �1
8z� 1

4þ
3
4z�1 � 1

4z�2 � 1
8z�3 (41)

Therefore, according to Eqs. (38)–(41), we know that
N–L-22 lifting wavelet filter bank is the lifting scheme of
JPEG2000-5/3.

According to above four equations, we haveX
k

~g0;k ¼ 1;
X

k

~g1;k ¼ 0;
X

k

g0;k ¼ 2;
X

k

g1;k ¼ 0

(42)

By comparing (37) and (42), the normalization is given
as follows:

X
k

~g0;k ¼
X

k

~g0;k

ffiffiffi
2
p

;
X

k

~g1;k ¼
X

k

~g1;k

, ffiffiffi
2
p

,

X
k

g0;k ¼
X

k

g0;k

, ffiffiffi
2
p

;
X

k

g1;k ¼
X

k

g1;k

ffiffiffi
2
p

(43)

The above normalization is performed using the
channel representation of the wavelet filter bank (see
Fig. 1(a)). In this section, the normalization conditions are
applied to the lifting scheme by stretching and shrinking
the decomposition coefficients; it can be achieved by
multiplying the scale factor n

ffiffiffi
2
p

;1
. ffiffiffi

2
p

;1
. ffiffiffi

2
p

;n
ffiffiffi
2
p

to the
low-pass analysis channel, the high-pass analysis channel,
the low-pass synthesis channel, and the high-pass synth-
esis channel, respectively (see Fig. 6). After normalization,
the following useful image compression system is
obtained.

In Fig. 6, X̂ðzÞ is the z-transform of input signal, X̂ðzÞ is
the z-transform of reconstruction signal. Xe and Xo denote
the even sampling and the odd sampling of X(z),
respectively. P is the prediction filter and U is the update
filter of lifting wavelet filter bank. A(z) and D(z) denote the
approximate coefficients and the detail coefficients of
wavelet transform, respectively.

6.3. Prediction filters of Neville– Lagrange lifting wavelet

family for image compression

In above two sections, we discussed the construction
and normalization of N–L-22 lifting wavelet filter bank. In
this section, the other prediction filters of Neville–
Lagrange lifting wavelet family for image compression
are built. The prediction filters with more order of
vanishing moments can be constructed by considering
Eqs. (21) and (22). In Eqs. (21) and (22), let N be even and
C ¼ ðN=2Þ � 1, according to Corollary 1 and Remark 1, we
can construct the most interesting two-channel Neville
filters with linear phase.
L-22 lifting wavelet.
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Table 3
Prediction filters of Neville– Lagrange lifting wavelet family with linear

phase

N zk

z�3 z�2 z�1 z0 z1 z2 z3 z4

2 1 1 /2

4 �1 9 9 �1 /24

6 3 �25 150 150 �25 3 /28

8 �5 49 �245 1225 1225 �245 49 �5 /211
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Let N be an even number and C ¼ ðN=2Þ � 1, Eqs. (21)
and (22) can be simplified as follows.

L2;1
N;ðN=2Þ�1;k ¼

ð�1ÞðN=2Þ�1�kQðN=2Þ�1
j¼0 ð2jþ 1Þ

QN=2
j¼1 ð2j� 1Þ

ðN � 1� 2kÞ2N�1Qk
j¼1j
QN�1�k

j¼1 j

0pkpN � 1 (44)

P2;1
N;ðN=2Þ�1ðzÞ ¼

XN�1

k¼0

L2;1
N;ðN=2Þ�1;kzkþ1�ðN=2Þ (45)

In (44) and (45), let N be 2, 4, 6, and 8, respectively,
we obtain the prediction filters of Neville–Lagrange lifting
wavelet family for image compression in Table 3 as
follows.

In Table 3, the prediction filter of N–L-22 lifting
wavelet filter bank constructed in Section 6.1 is obtained
by letting N be 2; the order of vanishing moments
of the prediction filter is 2. Similarly, the prediction
filter with 4, 6 and 8 vanishing moments are constru-
cted by letting N be 4, 6, and 8, respectively. Considering
Theorem 7, the corresponding update filter with vanishing
moments 4, 6 and 8 can been obtained. Therefore,
we can build the N–LLWFBs with linear phase and
with the same order both dual and primal vanishing
moments.

According to Table 3, these lifting wavelet filter banks
are named as Neville–Lagrange-44 (N–L-44 for short),
Neville–Lagrange-66 (N–L-66 for short), and Neville–
Lagrange-88 (N–L-88 for short), respectively. The normal-
izations of N–L-44, N–L-66 and N–L-88 are similar to
the normalization of N–L-22; the same scale factors and
the final diagram of image compression system which are
identical with Fig. 6 can be obtained.
Table 4
Subjective rating scale

Degradation Score

Imperceptible 1 (best)

Perceptible but not annoying 2

Slightly annoying 3

Annoying 4

Very annoying 5 (worst)
7. Experiments of N–LLWFBs for image compression

In this section, the objective and subjective measures
for image compression using N–LLWFBs are discussed.
The well-known PSNR is used in objective assessment,
and the model of five-level rating scale is employed in
subjective assessment. An image compression system
(see Fig. 6) is constructed using the N–LLWFBs and is
applied to the 512�512 8-bit gray-scale image Lena
and texture image Barbara. The compression performance
is compared among the N–L-22, N–L-44, N–L-66 and
N–L-88. The SPIHT coding algorithm is used and the
entropy coding is omitted.
7.1. Objective and subjective assessment for

image compression

It is well known that the peak-signal-to-noise-ratio
(PSNR for short) is a common objective criterion. The
PSNR can be calculated using the following formula

PSNR910 lg
ð2255

� 1Þ2

ð1=N1N2Þ
PN1�1

n1¼0

PN2�1
n2¼0 ðx½n1;n2� � x̂½n1;n2�Þ

2

(46)

where x[n1,n2] denotes the original image, x̂ [n1,n2] stands
for the reconstructed image, N1 is the number of row, and
N2 is the number of column.

As the final users of images are humans, the subjective
assessment for image compression by human observers is
another import method except for the objective assess-
ment. Both expert and non-expert observers are used in
experiments; non-experts represent the average viewers
while experts are believed to be able to give better, more
‘refined’ assessments of image quality since they have
been trained and are familiar with images and their
distortions. The rating scale used for the subjective
evaluation is shown in Table 4.

The mean rating of a group of observers who join the
evaluation is usually computed by

R ¼
Xn

k¼0

sknk

 !, Xn

k¼0

nk

 !
(47)

where sk is the score corresponding to the kth rating,
nk denotes the number of observers with this rating, and n

is the number of grades in the scale.

7.2. Objective and subjective assessment of N– LLWFBs for

image compression

The compression experiments of smooth images Lena
and texture image Barbara are given from Tables 5 to 8.
Tables 5 and 6 show the objective assessment using PSNR;
Tables 7 and 8 show the subjective assessment using
rating scale. The experimental process of subjective
assessment is described as follows.

Ten observers, chosen among people having different
image processing backgrounds, are asked to subjectively
evaluate the degraded images (Lena and Barbara). These
degraded images are displayed on a high-resolution
computer monitor, one at a time. The viewing distance
is set to 60 cm. Each image occupies a square with a side
length of 10 cm. The original image is always displayed in
a fixed location on the screen. The scales for degraded
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Table 5
PSNR of N-LLWFBs with different vanishing moments for image Lena

bpp N–L-22 N–L-44 N–L-66 N–L-88

0.0625 28.388190 28.646888 28.668415 28.673161

0.125 31.085838 31.522480 31.585347 31.606539

0.25 34.013769 34.603189 34.716958 34.762549

0.375 35.806474 36.089086 36.274045 36.493304

0.5 37.347574 37.951237 38.004821 38.128203

0.75 39.090764 39.271681 39.517236 39.943360

1 40.825022 41.209175 41.376081 41.402028

2 45.097569 45.204475 45.530564 45.565976

Table 6
PSNR of N-LLWFBs with different vanishing moments for image Barbara

bpp N–L-22 N–L-44 N–L-66 N–L-88

0.0625 22.761238 22.716716 22.673476 22.673006

0.125 23.703826 23.906033 23.982009 24.011992

0.25 25.770769 26.366012 26.572503 26.778435

0.375 27.809562 27.861638 28.242683 29.230180

0.5 29.321461 30.393102 30.818123 31.061414

0.75 31.725331 32.848914 33.161745 33.369653

1 34.144312 35.464328 35.942862 36.142676

2 41.127669 41.824135 42.009667 42.121895

Table 7
Subjective assessment of N-LLWFBs with different vanishing moments

for image Lena

bpp N–L-22 N–L-44 N–L-66 N–L-88

0.0625 5 5 5 5

0.125 5 4 4 4

0.25 3 3 3 3

0.375 3 2 3 2

0.5 2 2 2 2

0.75 1 1 1 1

1 1 1 1 1

2 1 1 1 1

Table 8
Subjective assessment of N-LLWFBs with different vanishing moments

for image Barbara

bpp N–L-22 N–L-44 N–L-66 N–L-88

0.0625 5 5 5 5

0.125 5 5 5 5

0.25 5 5 5 5

0.375 5 5 5 4

0.5 5 5 4 4

0.75 4 3 3 3

1 2 2 2 2

2 1 1 1 1
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images (Lena and Barbara) are shown in Tables 7 and 8,
respectively.

In Tables 5 and 6, we observe that the N–L-22 lifting
wavelet filter bank, which is the lifting scheme of 5/3
wavelet of JPEG2000, has the worst performance than
others, and the performance becomes better with the
increase of vanishing moments.

Comparing the result in Table 5 with Table 7, Table 6
with Table 8, we can conclude that the objective
assessment is consistent with the subjective assessment
for the N–LLWFBs.

8. Conclusion

A new wavelet family based on Neville filter theory and
Lagrange interpolation is constructed in this paper. The
coefficients of prediction filters are calculated using
Lagrange interpolation formula, and the corresponding
update filters are obtained by using the Neville filter
theory. The normalization conditions of N–LLWFBs are
discussed. It is also proven that JPEG2000-5/3 is a special
Neville–Lagrange lifting wavelet filter bank: Neville–
Lagrange lifting wavelet filter bank with order 2 both
dual and primal vanishing moments. The N–LLWFBs with
more vanishing moments than N–L-22, such as N–L-44,
N–L-66 or N–L-88, are applied to the image compression
and they have better performance than N–L-22. Therefore,
we consider that they have the potential ability to be
the substitution of wavelet filter banks of JPEG2000 for
lossless image compression.

We have to point out that the precondition of Theorem
5 is to limit the parameters N to interval [1,10] and M to
interval [2,10], but this limit is not necessary. Further
studies on Theorem 5 with arbitrary N and M will be
considered in our future work.
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